
Backup Buddy – Wireless

Backup Camera for Motor

Vehicles

Dylan Ortiz, Coleman Rogers, Luca Silvester,

and Zachary Slakoff

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Most modern cars come equipped with back

up cameras, however consumers looking to get a used car

don’t have as much a say in whether this feature is included,
even more so if the car is an older model. Aftermarket backup
cameras exist, but most are hard wired and require the user to

run cables throughout their vehicle, something that is both
inconvenient and unnecessary. Backup Buddy looks to solve
both of these issues by offering a backup camera solution for

everyone, that involves minimal installation and works
wirelessly through an Android app.

Index Terms — Accelerometer, Android, Bluetooth low

energy, I2C, raspberry pi, UART, ultrasonic sensors.

I. INTRODUCTION

Thanks to many advances in technology the standard

options available to people looking to buy new cars has

improved in recent years. But going back just a few more

years and premium options like a back-up camera were

often out of reach for anyone except those who were willing

to pay thousands of dollars extra. While many people can

get by just fine by looking behind them as they back out of

a parking spot, nobody is perfect and there still exists room

for error and mistakes can be made. The dangers of backing

out are clear and present, according to the National

Highway Safety and Traffic Administration, more than

18,000 backup-related injuries occur in the United States

each year with more than 200 of these injuries being fatal

[1]. An unaware or distracted driver operating a 2000-lb

vehicle creates a significant safety hazard for those walking

nearby and behind their backing-up vehicle. What if the

driver looks away for a second to check their phone? In

those few seconds, someone could appear that the driver

didn’t see initially. Thinking they are still clear they

continue to back-up, running the risk of unknowingly

hitting the pedestrian. Without a clear view of what’s

behind them, many drivers will just start to back out slowly.

This makes backing-up out of a parking spot a needlessly

dangerous guessing game for everyone involved.

Fortunately, this potentially dangerous situation can be

made safer by providing the driver with more information

about their surroundings through the use of a backup

camera on the vehicle.

II. SYSTEM COMPONENT OVERVIEW

The product we are striving to deliver on this project is a

small attachment to the rear of a motor vehicle, around the

license plate. This device would be capable of streaming a

video feed of the back of the vehicle with minimal latency

to the user’s smartphone. In the app the user can also see

information from a series of ultrasonic sensors built-in to

the device that provide precise distances to objects behind

them, and can provide audible warning through the app,

should the distance between the vehicle and an obstruction

behind it get too close. Once a user has successfully pulled

out of the parking spot and begins to drive away, an on-

board accelerometer would register the significant increase

in positive acceleration and trigger a shutdown of the video

stream, dropping the system into a low-power state while it

waits to begin streaming again.

The enclosure was designed using 3D modeling software

and printed on a 3D printer as 2 pieces. The rear piece

contains all of the hardware and mounting points for the

screws on the rear of the car. The front piece of the

enclosure is used to hold everything inside. The enclosure

holds 3 ultrasonic sensors on the sides and top of the

enclosure, with the bottom section housing the PCB, where

the microcontroller and accelerometer reside, as well as the

camera and raspberry pi for the video stream.

From these features we decided on, as well as the

logistics of creating them, the following table shows the

requirements specifications for our design.

 Hardware Performance

1 The system will draw no more than 12V from its power source

2 The system will weigh less than 10 pounds

3 The face of the system will take up a space no larger than 16in x
10in

4

The system will be able to accommodate up to 2A of current
draw under load

5 The size of the PCB shall be no larger than 2.5in x 5in

 Software Performance

1 The Android application will make an audible tone as well as
provide a visual warning on screen, to alert the driver when the
distance to an obstruction falls within an unsafe range of values.

2 The system will be able to detect obstructions that are behind
the vehicle within a field of view of 4 feet and the size of 1 cubic
foot.

3 Using an accelerometer, the system will detect once the car is
moving forward and when the car reaches a speed of faster than
10mph will turn off the rear facing camera

4 At all times that the car is in reverse, the camera feed will be
sent to the Android application

5 The video feed of the rear facing camera will have a framerate of
at least 15 fps at any given time

Fig. 1. Requirement Specifications

The following state machine diagram depicts how the

user will interact with our device. Once the user clicks the

start button on the app, a signal is sent to the

microcontroller over Bluetooth to initiate the transmission

of sensor data and start the video stream. Once the

accelerometer detects that the car is now moving forward,

the hardware will re-enter its low power state.

Fig. 2. Use Case Diagram

III. RELEVANT TECHNOLOGY AND COMPETING PRODUCTS

A. Competing Products

Aftermarket backup camera solutions are not a new

technology, our implementation is simply a different vision

that what is currently available to consumers. During our

research we came across multiple solutions that allow the

user to attach a camera system to the rear of their car. These

solutions gave us an insight in what is already available,

showing us what works and what needs improving.

The most basic of the competing products that were

researched, the ZUS model is simply a backup camera

transmitting only video feed, with no other sensor data. The

device itself measures only 12.2 X 1.7 inches on the front

and weighing 1.42 ounces. This gave us a starting point for

what is the basis of an aftermarket backup camera, however

its lack of features left a lot to be desired.

We learned from this that the camera doesn’t take up a

lot of space in the design of a backup camera. When it

comes to simply transmitting that feed, there is a lot of room

for extra features to be added. While the smaller form factor

of this design was nice, we couldn’t stuff all of the sensors

we wanted into something quite as small, so we knew that

was a flaw of this design.

Pearl’s RearVision model is closer representation of what

our design started out as. It features a bit more complexity,

with solar panel rechargeability and a dual camera system

for depth perception. However, this product still only

provided the user with a video feed and no other data. The

form factor of this product more closely resembled the early

schematics of what we had in mind for our design. Aside

from that there was not a lot this product offered compared

with the ZUS model.

FensSens is the only of the researched products that

features a sensor system, but surprisingly lacks any camera

feed whatsoever. It relayed the sensor data back to a

smartphone app, with a graphic that gave the user a

representation of any obstructions around the car. This

model didn’t have rechargeable batteries, but rather ran off

AA batteries that would need to be replaced. This approach

is a bit of an inconvenience when it comes to user

experience, but since the battery life is said to be 5 months,

the system can allow it.

Multiple aspects from these systems would be great to

have as an aftermarket product for a car, we used this

information and found that these systems were lacking

features from one another. The form factor of the Pearl

allowed for more components to be added, such as the

motion sensors in the Fens Smart.

B. Wireless Communication

The three main wireless technologies we were deciding

between were Wi-Fi, Bluetooth Low Energy (BLE) and

Zig-Bee. Wi-Fi was found to be too power hungry for the

applications associated with UART and I2C, the bandwidth

was more than enough. However, for the transmission of

video footage, Wi-Fi was the best option. It was selected in

conjunction with the Raspberry Pi to encode and transmit

the video feed.

For the transmission of data between the phone and the

microcontroller, it was a debate between Bluetooth and

Zig-Bee. Zig-Bee beat our Bluetooth in most categories,

that being bandwidth, range, and even price. The reason we

went with Bluetooth in the end however is that Bluetooth is

already built into the smartphone. Using Zig-Bee would

have required the use of another device to receive data from

the microcontroller, making the use of a smartphone

redundant.

C. System Enclosure

The enclosure needed to be able to not only house all the

components of our system but stay affixed to the car while

in motion. Laser cutting, and 3D printing were the 2

solutions that seemed most appropriate, but after further

investigation, laser cutting would not work. Laser cutting

only allows flat surfaces to be cut, forcing us to create a box

shape by hand.

During the final stages of our development, it turned out

that the 3D print design we created was too large for the

printers on campus. And we tried outsourcing to a third

party for printing, but it turns out that was too expensive, so

we opted to create the final design by hand, using wood,

which gave us a good enclosure for a proof of concept.

The size of our enclosure factored in two things: the size

of the components we chose, and the area around the license

plate that was available to us. The largest component we

have is the microcomputer, which is why the bottom section

of the enclosure has its thickness. The dimensions of the

enclosure, shown below, measure 165 x 328 x 25mm.

Fig. 3. Backup Buddy 3D Model

IV. STANDARDS AND DESIGN CONSTRAINTS

Our design fit into multiple categories, such as wireless

transmission, vehicle and driving safety among others, and

thus many standards have already been put into place that

we felt our obligation to adhere to.

A. Standards

The only standards found regarding lithium ion batteries

referred to their manufacturing. As they can be explosive

and dangerous if not handled properly, we had to ensure we

were getting them from a reliable source, and that when not

in use they were stored properly.

For the C and Java code we were writing, there are certain

conventions in the community that allow for code reuse and

readability. Both Java and C documentation regarding their

respective conventions were read and we made sure to stick

to these conventions. The most important of these that we

stuck too had to do with writing code that can be run on

different systems, as well as how the compiler will handle

our code [2] [3].

Android applications that make their way to the Google

Play store need to adhere to Googles terms of service. When

requesting permissions from the user it is imperative that

any and all data that we need access to be made aware to

the user. Because of this, the first time the app is

downloaded, the user is asked to allow for any permissions

for data that might be needed for the app to run properly.

Section VIII goes into detail of our testing process, but

there were standards when it came to software testing.

While quite an extensive list, we took away the following

details.

Anytime our code is updated in a major way, we had to

re run our tests to ensure everything was working as our

tests expected. The next was documentation, and the

various titles of documents to keep track of. During testing

we took notes that we exchanged as a group regarding the

different tests, but once our testing divulged into the

hardware and software testing together, our documentation

turned into spreadsheets of what needed to be retested or

improved. We also created tests around bugs that came up

during our testing, as well as remove tests that passed due

to bugs [4].

B. Design Constraints

Our initial research found multiple constraints that might

hinder our progress during the development phase. These

ranged from economic, environmental, and even social

constraints. When development commenced, we found

only some of these impacted us in a meaningful way. The

political constraint that we had to work around was the fact

that some laws inhibit the use of mounts on or around the

license plate. For our testing purposes we made sure that

the license plate number was visible when mounted,

however this wouldn’t be enough for this to be used all over

the country, something that was a challenge giving the size

of our components.

Manufacturability of our 3D enclosure was also an issue,

the lab on our college campus had numerous printers for

students, however due to the size of our enclosure, we had

to go off site to get the final enclosure printed. This caused

us extra time and money but was a necessary expense.

V. COMPONENT SELECTION

Our system is broken up into various sensors, as well as

the use of a microcontroller and microcomputer, our final

selection was dependent on both cost, component research,

and the experience of our individual group members.

A. Microcontroller – MSP430F5969

The microcontroller oversees handling all of the sensor

data, as well as some interaction with the microcomputer

and camera, and sending this information to the Android

app. For this task we decided to go with a TI chip, our group

was already familiar with their line of MSP430

microcontrollers and had a simple one we could use during

prototyping. In comparison with 2 other choices, the

MSP430G2553 and the ATmega328P, the FR5969 had the

lowest power consumption and the most amount of GPIO

pins. It was the most expensive out of the bunch, but by

only a dollar more, so this did not impact our decision.

The microcontrollers were all similar, as they all had

UART and I2C, which were needed for our sensor data.

There was also the added benefit of it being a smaller form

factor. The G2553 was one every member of our group

already owned, but it was so large and had a limited number

of GPIO pins it would have made for a much less optimized

PCB design.

B. Microcomputer – Raspberry Pi 3B+

The encoding of the camera feed to the phone needed

something a lot more powerful than a microcontroller,

leading to us using the Raspberry Pi. Again, our group had

the most experience with the Raspberry Pi line of

microcomputers as opposed to one of its competitors, the

Banana Pi. The 3B+ model had a ribbon cable input, built

in Wi-Fi, and exposed pins that would allow us to interact

with the microcontroller, which is all that we needed.

C. Camera – Omnivision 5647

With safety being the backbone of our design, we

required a wide viewing angle from the camera as well as

ease of integration with the Raspberry Pi. There is an

official camera for the Raspberry Pi, however it only had a

standard lens with a viewing angle of 62 degrees. The

Omnivision 5647 was just as compatible, having the correct

firmware as well as a wide-angle lens attached to it with a

field of view of 150 degrees, ideal for a backup camera. The

camera is attached to the Raspberry Pi using a ribbon cable,

which was ideal for the placement in our enclosure,

allowing rigid flexibility for positioning it at the bottom of

the enclosure.

D. Ultrasonic Sensor – HC-SR05

Most of the cheap ultrasonic sensors found online

operated very similar to one another, with the only

differences being the manufacturer or the color. A 4 pin and

a 5-pin model were available, with the 5-pin model having

an extra feature. Normally, there is a pin to activate the

trigger, which sends out a pulse, and a pin to receive the

echo that comes back, and the time between them is

measured to calculate the distance to the object the pulse

bounced off. This requires 2 GPIO pins. The 5-pin model

has an extra pin, that when grounded, allows the echo pin

to operate as both the trigger and the echo, allowing for the

use of a single GPIO pin. We decided to go with this to

simplify our PCB design as well as the layout of all of the

hardware.

However, when it came time to test these sensors, the

datasheets that were found were sparse and limited in their

information. While they boast this single pin trigger/echo

feature, it cannot be implemented with the sensors we

received. The 5-pin model can still operate with the 2-pin

trigger/echo setup, but this did cause a modification to be

made to our PCB design.

E. Accelerometer – MMA8452Q

For the use of motion sensing and direction, we wanted

to go with an accelerometer. Their small size and generosity

with data accuracy gave us a lot to work with. The protocol

that the accelerometer uses for communication with the

microcontroller is I2C, one line for the data and one line for

the clock. We went with a 3-axis model, as we did not need

a gyroscope or a compass along with the accelerometer. A

lot of other models gave the same information, however

they transmitted it over an analog signal. Considering our

use of a digital framework, using an accelerometer that

gave a digital signal would allow for better integration.

F. Bluetooth Module – HC-06

For the transmission of data between the microcontroller

and the app, we needed to use Bluetooth. As it was already

integrated with the Android phone we used, a module that

could be soldered onto our PCB would allow us to send

information over UART to the phone. Our original module

was the HM-10, however its advertised range was nowhere

near what we were getting during our testing. The HC-06

was our second choice, which had a much-improved range

for our purposes.

The transmit and receive pins on the module are

connected to the transmit and receive pins on the

microcontroller for UART communication. Every time

there is new data to be sent over, we break it up from 16-bit

values into two 8-bit values and transmit them in an order

that the app knows, so it can be properly reconstructed for

the user.

VI. HARDWARE DESIGN

The hardware involved all of the components listed in the

previous section, brought together on a single PCB. One of

the biggest concerns with the hardware is the power

efficiency. Using lithium ion rechargeable batteries means

we have to be a lot more conscious of the power draw from

the sensors, Raspberry Pi, and microcontroller. This section

covers all of that, as well as electronic components that will

be used to connect all the major components.

A. Power Solutions

Being mounted on the outside of a car, we had a few

different options how powering our system. We first

considered tapping into the brake lights, as these would be

the closest source of electricity to the license plate. We

opted against it in favor of something that wouldn’t force

the user to run wires through their car. Rechargeable

batteries were the best option for this. In terms of charging

them, solar panels were considered. However, because of

our enclosure design and the placement of the hardware,

even if solar panels were to be affixed, they wouldn’t get

the best sunlight exposure, and thus were deemed an

unnecessary addition.

For the rechargeable batteries, we chose lithium ion over

Nickle metal hydride. Lithium ion batteries are typically

used in cell phones and notebook computers due to being

lightweight yet holding lots of energy within a compact

package. Another advantage is their low self-discharge

when the battery is not in use. Since lithium ion batteries

commonly operate at 3.7 V, the voltage is easily and

efficiently able to be stepped down without much power

loss since the MCU can operate at a voltage of 3.6 V, only

a 0.1 V difference. The biggest advantage of lithium ion

batteries is their self-discharge rate, which can typically be

from 0.5% - 3% of the batteries capacity per day [5].

B. Voltage Regulators

In our design, all the components on the PCB are

designed to have low input voltages - typically between

1.8V - 3.6V. However, with the battery connected, we will

have a 3.7V - 5V DC input, depending on the battery we

choose. In order to operate our microcontroller and attached

components, including the camera, we needed to convert

the battery into the appropriate lower voltage. A voltage

regulator would have been the cheapest option, required

only a resistor. However, since the resistor value never

changes it only supplies the voltage intended with a

constant load impedance - which may not hold true in a

real-world environment. While that is a negative aspect of

the reliability - there is a positive aspect in that it is

impossible for there to be a short circuit - which means the

components are safe. This circuit will waste most of the

power supplied into the resistor, which means very low

efficiency, less than 50%.

In terms of our design, we decided that higher frequency

voltage converters would be more beneficial. This is mainly

due to the ability to have a smaller inductor and capacitor

in the circuit, as well as the fact that the power loss was

minimal when currents are as small as they will be in our

device.

Based upon the different voltage regulators we

researched, we decided to use the TPS63051 for our 3.3 V

applications. The biggest factor in deciding was due to it

having a significantly higher switching frequency than the

TPS64200 family of devices. The difference between the

other characteristics - such as efficiency and the voltage

input range were negligible. The major advantage the

TPS64200 family had was the maximum current being 3

amperes, but for our design this much current would not be

necessary, in fact we only estimated needing 9 mA. The

maximum currents of 1 ampere in the TPS63051 will be

more than enough to supply power to all of the components

that require a 3.3-volt VCC.

C. Logic Voltage Level Shifting

Our system has components that operate at two different

voltage levels - 3.3 volts and 5 volts. In order for any

components that operate at different voltages to

communicate with each other, the voltage level of each data

pin must be shifted along the connection path in order to

not cause damage to components or give unreliable results.

In terms of our design, the specific components that operate

at different voltage levels but were required to

communicate to each other were the HC-SR05 ultrasonic

sensors and the MSP430FR59561 microcontroller.

We opted not to use voltage dividers on the PCB, as it

would require multiple resistors, for the 3 ultrasonic sensors

used, but instead use a logic voltage level translation. The

TXB0104 model can handle 100 mA of output current, as

opposed to the LFS0204 mode, which gives us a little more

safety in terms of extra unanticipated current [6]. To

safeguard our design, we decided to use the TXB0104 for

our system

D. Raspberry Pi Power

The Raspberry Pi is the component that will draw the

largest amount of power in our system. In order to power

the Raspberry Pi, we needed a voltage source supplying 5V.

Since our lithium ion battery will not supply this voltage,

we will need a DC step up converter, also known as a boost

converter.

The trade-off when deciding between the TPS61253A

and the TPS61232 boost converter components was the

switching frequency and the maximum current output.

Since this portion of the power supply would be used to

power the Raspberry Pi module, which recommends for a

2.5 ampere power supply, we decided to use the TPS61232.

This component, despite having a lower switching

frequency, still held efficiency above 90% at the low

current ranges that our system would operate in low power

mode. It also was a safer choice due to being able to handle

more load current, in case of any unforeseen current drains

in our implementation.

 TPS61253A TPS61232

Voltage input
range

2.3 V - 5.5 V 2.3 V - 5.5 V

Voltage output
range

5 V 5V

Maximum
current output

1.5A 2.1A

Operating
temperature

-40°C - 85°C -40°C - 85°C

Switching
Frequency

3.5MHz 2MHz

Fig. 4. Boost Converter Comparison

E. Initial Design

Fig. 5. Initial Design Flowchart

This image serves as the basis of our hardware design.

The items in purple represent the sensors and hardware that

are supplement to the microcontroller and the

microcomputer. The battery, as well as a USB charging port

connected to the charge controller allow us to charge the

batteries while in the device. The branches to the respective

regulators then go off to the hardware that needs either 5v

or 3.3v to be powered.

F. Power Design

The step-up converters were used for up stepping the

power for the Raspberry Pi, we needed 2 different voltage

regulators for the many parts of the system: a 3.3v regulator

to power the microcontroller and accelerometer, and a 5v

regulator for the ultrasonic sensors and Raspberry Pi. We

used the TPS63051 buck converter and the TPS61232 step

up converter for our 3.3v and 5v needs respectively. These

modules were chosen based on the 3.3v regulators

efficiency, while the 5v regulator was designed specifically

for lithium ion batteries.

G. Microcontroller Design

Part Manufacturer Model QTY

HM-10 Bluetooth
Module

DSD Tech ML-HM-10 1

MMA8452Q
Accelerometer

Xtrinsic SEN-12756 1

HC-SR05
Ultrasonic
Sensor

Iduino HCSR0501 3

TXB0104 Level
Shifter

Texas
Instruments

TXB0104DR 1

4.7 μF X5R
Capacitors

Taiyo Yuden EMK212BBJ4
75MK-T

1

0.1 μF X5R
Capacitors

Taiyo Yuden JMK042BJ104
MC-W

8

4.7k Resistor ROHM
Semiconductors

ESR01MZPJ4
72

3

50k Resistor Vishay CRCW040250
K0FKED

1

Fig. 6. Bill of Materials for Microcontroller schematic

The HC-06 Bluetooth module communicates with UART

for receiving and transmitting data. Those pins on the

module connect with the MSP430FR59691 on its

respective UART pins 2.5 for receiving data and 2.6 for

transmitting data. The other most notable pin on the HC-06

is pin 12, which is where the 3.3-volt power source will be

supplied. For implementation, we plan on soldering the

Bluetooth module directly on to the PCB.

The MMA8452Q accelerometer connects using both I2C

and GPIO connection. The SCL and SDA pins each have a

pull up resistor configuration in order to avoid floating

values and are connected to the SCL and SDA pins on the

MSP430FR59561. The interrupt pins are connected to

generic GPIO pins on the microcontroller, and the inputs

have decoupling capacitors in order reduce high frequency

noise in the power supply - as recommended by the

datasheet. These interrupt pins were included in case we

decided we could use them, which ended up not being in

our final design.

As noted before, the three HC-SR06 ultrasonic sensors

were originally designed to work on a 3-pin model, but this

proved to be a challenge and we had to include 2 GPIO pins

for each sensor. The trigger and echo pins on each sensor

are connected to a logic level shifter before connecting to a

GPIO pin on the microcontroller.

VII. SOFTWARE DESIGN

A. Android Application

Java was the primary language used when developing the

Android app. We utilized Android Studio development and

debugging, due to its support from Google as well as the

ease of creating new screens for the user to navigate

through. The app works through a series of panes: The

wake-up command screen, the video stream screen,

settings, and the debug screen which we used during

testing. A Bluetooth connection is made from the wake-up

screen, and once the connection is successful, the video

stream begins to initialize, and the user is brought to the

streaming screen. Java handles raw byte data a bit

differently than C does, so the data being sent from the

microcontroller is put back together and converted back to

the original integer and floating-point values. Once the

microcontroller sends the signal that the car no longer needs

to be sending the camera feed, the app with cease all

transmissions and go back to the wake-up screen, awaiting

the user to need it again.

We went with a very simplified approach for the app,

since it will be used while driving, we didn’t want the user

to have to navigate through a lot of options and pages.

There are multiple threads handling the Bluetooth and

video streaming actions in the background, to ensure there

is minimal lag during peak data transmission.

B. Microcontroller Embedded Programming

TI has very useful launch pads for a lot of their MSP430

Microcontroller devices. Our model had one available,

which gave us a lot of room to test and prototyping our code

and hardware before soldering to our PCB. The launch pad

also allows us to connect 2 wires to the microcontroller that

is connected to our PCB to load our code using Spy-bi

Wire.

For writing the C code that would be used on the

MSP430, we used both Code Composer Studio, otherwise

known as CCS, as well as TI’s own IDE, Energia. Code

Composer allowed us to modify actual registers and use

interrupts and low power mode, giving us the most usage

out of the device. Energia, while limited in its functionality,

was great as a backup tool that we used when we needed to

test thing such as pins going high without creating a whole

new project in CCS.

The software for our microcontroller had the

responsibility of turning on and capturing data from the

accelerometer and the ultrasonic sensors, and relaying that

data over UART to the Bluetooth module, being taken in

by the Android app. The code that is written to run the

sensors and begin collecting data, waits for an interrupt that

runs when the wake command is sent from the phone to the

microcontroller. During the time that the camera is in use,

the sensor data is constantly being sent. It isn’t until camera

feed transmission ceases that the microcontroller will stop

sending data and re-enter its low power state. It is this low

power state that allows for better battery consumption. The

Raspberry Pi is very power hungry, so maintaining a system

that shuts down these large operations when the user is no

longer backing up extends the life of the battery.

C. User Stories

Below are the user stories that we created when designing

the software for our application and hardware. We wanted

to look at the user experience from their point of view, and

ensure it functioned as a consumer would expect. These

stories were formatted into requirements and aided us in the

design process.

ID As a... I want to be

able to...
So that I can...

1 User See the camera
feed from the rear
facing camera

see what is
behind me as I
backup

2 User Get visual cues
when an
obstruction is
behind the car

act accordingly
so that a collision
does not occur

3 User Get audio cues
when an
obstruction is
behind the car

act accordingly
so that a collision
does not occur

4 User Connect to the
camera assembly
via Bluetooth

have it turn on
before I get to the
car

5 User Connect to the
camera assembly
via Wi-Fi

get the various
sensor information
sent to my phone

Fig. 7. User Stories

All these user stories involved communication between

the app and the hardware. The audio and visual queues start

off with the sensor data being transmitted to the app, which

begins with the Bluetooth connection being initiated. As a

user, we included the stories about Bluetooth and Wi-Fi,

since Bluetooth is a much simpler process for end users to

configure. The app is designed to seamlessly make the

connection, and even if the user had to find the device on

their own, they would be able to. This was initially part of

our design, having us consider if there was multiple Backup

Buddies to connect to.

VIII. SYSTEM TESTING

Testing the android app and the embedded hardware was

done as we integrated new features. Once these features

were set in stone and everything was brought together, we

created a series of physical and tests to put the device

through, both in the lab and in a testing environment

A. Ultrasonic Sensor Testing

Due to the ultrasonic sensors not being the most accurate

devices, we recorded the data we received from them to

create thresholds and maximums to stop incorrect data from

being sent to the user. We created a maximum distance to

be considered at 130cm, as anything further than this would

not be in immediate danger of a moving vehicle. This was

tested by having the sensors placed facing outward on a

table, and a large flat notebook as the test obstruction. Our

testing showed us that anything further than 130cm

wouldn’t be relayed back to the user.

We also had to test for 0 data. This is what we called that

data that resulted from a timeout of the sensors. Because

they rely on a pulse to be caught, if that pulse bounced out

of range then the data wouldn’t be useful. So, we had our

system set to not use the data if it was zero, but maintain

the value caught before that transmission. These tests

proved successful, and we were able to have our sensors

give us usable data, even if there were spikes or drops.

B. Accelerometer Testing

The 3-axis accelerometer we are using has a lot of

different registers, but we were just interested in the x, y,

and z Gs data. This was simple enough, as we just

programmed the accelerometer to send this information

over Bluetooth alongside the ultrasonic data. The

debugging interface we created showed us that this data was

coming in as expected and changed with regard to changed

in motion of the accelerometer.

C. Camera Testing with Sensor Data

Transmission of the camera feed along side the data

incoming from the Bluetooth is what the user will be seeing

when they are inside the car. We setup an environment

where the app would send a signal to initiate the

transmission with both the microcontroller and the

microcomputer. This initiated both a Bluetooth and Wi-Fi

connection, starting the transmission of both the camera

feed as well as the sensor information.

Inside of the lab, we had the camera sitting in safe place,

with the sensors on the PCB connected separately. While

the transmission of the video feed was going, data was

being sent to the phone. As expected, whenever we would

place an object in front of the sensors, there was a visual

change, depending on how far the object was. We were able

to view the raw data on our computers, to verify that the

data we were seeing gave the appropriate response on the

phone.

ACKNOWLEDGEMENT

The authors wish to acknowledge our professors, Dr. Lei

Wei and Dr. Samuel Richie, for their advice and feedback

during the design process, as well as all the faculty and

industry reviewers who took time to come out and critique

the final product.

REFERENCES

[1] United States, Congress, Cong., Committee on

Transportation and Infrastructure. “NHTSA.” NHTSA, Nov.
2008. 110th Congress, 2nd session, report DOT HS 811 44 ,
crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/81114
4

[2] “Java Code Conventions” Sun Microsystems, 1997

http://web.archive.org/web/20090915035719/http://java.sun
.com/docs/codeconv/CodeConventions.pdf

[3] “ISO/IEC 9899:TC2 Programming Language - C” ISO/IEC,

2005, http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

[4] Hesham Alaqail and Shakeel Ahmed “Overview of Software

Testing Standard ISO/IEC/IEEE 29119” IJCSNS
International Journal of Computer Science and Network
Security, VOL.18 No.2, February 2018,
https://www.researchgate.net/publication/323759544_Over
view_of_Software_Testing_Standard_ISOIECIEEE_29119

[5] “What's the Best Battery?” Battery University, 21 Mar. 2017,

www.batteryuniversity.com/learn/archive/whats_the_best_b
attery

[6] “TXB0104 4-Bit Bidirectional Voltage-Level Translator With

Automatic Direction Sensing and ±15-KV ESD Protection.”
Texas Instruments, Apr. 2006,
www.ti.com/lit/ds/symlink/txb0104.pdf.

http://web.archive.org/web/20090915035719/http:/java.sun.com/docs/codeconv/CodeConventions.pdf
http://web.archive.org/web/20090915035719/http:/java.sun.com/docs/codeconv/CodeConventions.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

