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Abstract  —  Most modern cars come equipped with back 

up cameras, however consumers looking to get a used car 

don’t have as much a say in whether this feature is included, 
even more so if the car is an older model. Aftermarket backup 
cameras exist, but most are hard wired and require the user to 

run cables throughout their vehicle, something that is both 
inconvenient and unnecessary. Backup Buddy looks to solve 
both of these issues by offering a backup camera solution for 

everyone, that involves minimal installation and works 
wirelessly through an Android app. 

Index Terms  —  Accelerometer, Android, Bluetooth low 

energy, I2C, raspberry pi, UART, ultrasonic sensors. 

 

I. INTRODUCTION 

Thanks to many advances in technology the standard 

options available to people looking to buy new cars has 

improved in recent years. But going back just a few more 

years and premium options like a back-up camera were 

often out of reach for anyone except those who were willing 

to pay thousands of dollars extra. While many people can 

get by just fine by looking behind them as they back out of 

a parking spot, nobody is perfect and there still exists room 

for error and mistakes can be made. The dangers of backing 

out are clear and present, according to the National 

Highway Safety and Traffic Administration, more than 

18,000 backup-related injuries occur in the United States 

each year with more than 200 of these injuries being fatal 

[1]. An unaware or distracted driver operating a 2000-lb 

vehicle creates a significant safety hazard for those walking 

nearby and behind their backing-up vehicle. What if the 

driver looks away for a second to check their phone? In 

those few seconds, someone could appear that the driver 

didn’t see initially. Thinking they are still clear they 

continue to back-up, running the risk of unknowingly 

hitting the pedestrian. Without a clear view of what’s 

behind them, many drivers will just start to back out slowly. 

This makes backing-up out of a parking spot a needlessly 

dangerous guessing game for everyone involved. 

Fortunately, this potentially dangerous situation can be 

made safer by providing the driver with more information 

about their surroundings through the use of a backup 

camera on the vehicle. 

II. SYSTEM COMPONENT OVERVIEW 

The product we are striving to deliver on this project is a 

small attachment to the rear of a motor vehicle, around the 

license plate. This device would be capable of streaming a 

video feed of the back of the vehicle with minimal latency 

to the user’s smartphone. In the app the user can also see 

information from a series of ultrasonic sensors built-in to 

the device that provide precise distances to objects behind 

them, and can provide audible warning through the app, 

should the distance between the vehicle and an obstruction 

behind it get too close. Once a user has successfully pulled 

out of the parking spot and begins to drive away, an on-

board accelerometer would register the significant increase 

in positive acceleration and trigger a shutdown of the video 

stream, dropping the system into a low-power state while it 

waits to begin streaming again. 

The enclosure was designed using 3D modeling software 

and printed on a 3D printer as 2 pieces. The rear piece 

contains all of the hardware and mounting points for the 

screws on the rear of the car. The front piece of the 

enclosure is used to hold everything inside. The enclosure 

holds 3 ultrasonic sensors on the sides and top of the 

enclosure, with the bottom section housing the PCB, where 

the microcontroller and accelerometer reside, as well as the 

camera and raspberry pi for the video stream.  

From these features we decided on, as well as the 

logistics of creating them, the following table shows the 

requirements specifications for our design. 

 
 Hardware Performance  

1  The system will draw no more than 12V from its power source  

2  The system will weigh less than 10 pounds  

3  The face of the system will take up a space no larger than 16in x 
10in  

  
4 

The system will be able to accommodate up to 2A of current 
draw under load 

5 The size of the PCB shall be no larger than 2.5in x 5in 

 Software Performance  

1  The Android application will make an audible tone as well as 
provide a visual warning on screen, to alert the driver when the 
distance to an obstruction falls within an unsafe range of values.  

2  The system will be able to detect obstructions that are behind 
the vehicle within a field of view of 4 feet and the size of 1 cubic 
foot.  

3  Using an accelerometer, the system will detect once the car is 
moving forward and when the car reaches a speed of faster than 
10mph will turn off the rear facing camera  



4  At all times that the car is in reverse, the camera feed will be 
sent to the Android application  

5  The video feed of the rear facing camera will have a framerate of 
at least 15 fps at any given time  

 
Fig. 1. Requirement Specifications 

 

The following state machine diagram depicts how the 

user will interact with our device. Once the user clicks the 

start button on the app, a signal is sent to the 

microcontroller over Bluetooth to initiate the transmission 

of sensor data and start the video stream. Once the 

accelerometer detects that the car is now moving forward, 

the hardware will re-enter its low power state. 

 
Fig. 2. Use Case Diagram 

III. RELEVANT TECHNOLOGY AND COMPETING PRODUCTS 

A. Competing Products 

Aftermarket backup camera solutions are not a new 

technology, our implementation is simply a different vision 

that what is currently available to consumers. During our 

research we came across multiple solutions that allow the 

user to attach a camera system to the rear of their car. These 

solutions gave us an insight in what is already available, 

showing us what works and what needs improving.  

The most basic of the competing products that were 

researched, the ZUS model is simply a backup camera 

transmitting only video feed, with no other sensor data. The 

device itself measures only 12.2 X 1.7 inches on the front 

and weighing 1.42 ounces. This gave us a starting point for 

what is the basis of an aftermarket backup camera, however 

its lack of features left a lot to be desired. 

We learned from this that the camera doesn’t take up a 

lot of space in the design of a backup camera. When it 

comes to simply transmitting that feed, there is a lot of room 

for extra features to be added. While the smaller form factor 

of this design was nice, we couldn’t stuff all of the sensors 

we wanted into something quite as small, so we knew that 

was a flaw of this design. 

Pearl’s RearVision model is closer representation of what 

our design started out as. It features a bit more complexity, 

with solar panel rechargeability and a dual camera system 

for depth perception. However, this product still only 

provided the user with a video feed and no other data. The 

form factor of this product more closely resembled the early 

schematics of what we had in mind for our design. Aside 

from that there was not a lot this product offered compared 

with the ZUS model. 

FensSens is the only of the researched products that 

features a sensor system, but surprisingly lacks any camera 

feed whatsoever. It relayed the sensor data back to a 

smartphone app, with a graphic that gave the user a 

representation of any obstructions around the car. This 

model didn’t have rechargeable batteries, but rather ran off 

AA batteries that would need to be replaced. This approach 

is a bit of an inconvenience when it comes to user 

experience, but since the battery life is said to be 5 months, 

the system can allow it. 

Multiple aspects from these systems would be great to 

have as an aftermarket product for a car, we used this 

information and found that these systems were lacking 

features from one another. The form factor of the Pearl 

allowed for more components to be added, such as the 

motion sensors in the Fens Smart. 

B. Wireless Communication 

The three main wireless technologies we were deciding 

between were Wi-Fi, Bluetooth Low Energy (BLE) and 

Zig-Bee. Wi-Fi was found to be too power hungry for the 

applications associated with UART and I2C, the bandwidth 

was more than enough. However, for the transmission of 

video footage, Wi-Fi was the best option. It was selected in 

conjunction with the Raspberry Pi to encode and transmit 

the video feed. 

For the transmission of data between the phone and the 

microcontroller, it was a debate between Bluetooth and 

Zig-Bee. Zig-Bee beat our Bluetooth in most categories, 

that being bandwidth, range, and even price. The reason we 

went with Bluetooth in the end however is that Bluetooth is 

already built into the smartphone. Using Zig-Bee would 

have required the use of another device to receive data from 

the microcontroller, making the use of a smartphone 

redundant.  

C. System Enclosure 

The enclosure needed to be able to not only house all the 

components of our system but stay affixed to the car while 

in motion. Laser cutting, and 3D printing were the 2 

solutions that seemed most appropriate, but after further 



investigation, laser cutting would not work. Laser cutting 

only allows flat surfaces to be cut, forcing us to create a box 

shape by hand. 

During the final stages of our development, it turned out 

that the 3D print design we created was too large for the 

printers on campus. And we tried outsourcing to a third 

party for printing, but it turns out that was too expensive, so 

we opted to create the final design by hand, using wood, 

which gave us a good enclosure for a proof of concept. 

The size of our enclosure factored in two things: the size 

of the components we chose, and the area around the license 

plate that was available to us. The largest component we 

have is the microcomputer, which is why the bottom section 

of the enclosure has its thickness. The dimensions of the 

enclosure, shown below, measure 165 x 328 x 25mm. 

 
Fig. 3. Backup Buddy 3D Model 

 

IV. STANDARDS AND DESIGN CONSTRAINTS  

Our design fit into multiple categories, such as wireless 

transmission, vehicle and driving safety among others, and 

thus many standards have already been put into place that 

we felt our obligation to adhere to. 

 

A. Standards 

The only standards found regarding lithium ion batteries 

referred to their manufacturing. As they can be explosive 

and dangerous if not handled properly, we had to ensure we 

were getting them from a reliable source, and that when not 

in use they were stored properly. 

For the C and Java code we were writing, there are certain 

conventions in the community that allow for code reuse and 

readability. Both Java and C documentation regarding their 

respective conventions were read and we made sure to stick 

to these conventions. The most important of these that we 

stuck too had to do with writing code that can be run on 

different systems, as well as how the compiler will handle 

our code [2] [3]. 

Android applications that make their way to the Google 

Play store need to adhere to Googles terms of service. When 

requesting permissions from the user it is imperative that 

any and all data that we need access to be made aware to 

the user. Because of this, the first time the app is 

downloaded, the user is asked to allow for any permissions 

for data that might be needed for the app to run properly. 

Section VIII goes into detail of our testing process, but 

there were standards when it came to software testing. 

While quite an extensive list, we took away the following 

details. 

Anytime our code is updated in a major way, we had to 

re run our tests to ensure everything was working as our 

tests expected. The next was documentation, and the 

various titles of documents to keep track of. During testing 

we took notes that we exchanged as a group regarding the 

different tests, but once our testing divulged into the 

hardware and software testing together, our documentation 

turned into spreadsheets of what needed to be retested or 

improved. We also created tests around bugs that came up 

during our testing, as well as remove tests that passed due 

to bugs [4]. 

B. Design Constraints 

Our initial research found multiple constraints that might 

hinder our progress during the development phase. These 

ranged from economic, environmental, and even social 

constraints. When development commenced, we found 

only some of these impacted us in a meaningful way. The 

political constraint that we had to work around was the fact 

that some laws inhibit the use of mounts on or around the 

license plate. For our testing purposes we made sure that 

the license plate number was visible when mounted, 

however this wouldn’t be enough for this to be used all over 

the country, something that was a challenge giving the size 

of our components. 

Manufacturability of our 3D enclosure was also an issue, 

the lab on our college campus had numerous printers for 

students, however due to the size of our enclosure, we had 

to go off site to get the final enclosure printed. This caused 

us extra time and money but was a necessary expense. 

V. COMPONENT SELECTION 

Our system is broken up into various sensors, as well as 

the use of a microcontroller and microcomputer, our final 

selection was dependent on both cost, component research, 

and the experience of our individual group members. 

 

A. Microcontroller – MSP430F5969 

The microcontroller oversees handling all of the sensor 

data, as well as some interaction with the microcomputer 



and camera, and sending this information to the Android 

app. For this task we decided to go with a TI chip, our group 

was already familiar with their line of MSP430 

microcontrollers and had a simple one we could use during 

prototyping. In comparison with 2 other choices, the 

MSP430G2553 and the ATmega328P, the FR5969 had the 

lowest power consumption and the most amount of GPIO 

pins. It was the most expensive out of the bunch, but by 

only a dollar more, so this did not impact our decision. 

The microcontrollers were all similar, as they all had 

UART and I2C, which were needed for our sensor data. 

There was also the added benefit of it being a smaller form 

factor. The G2553 was one every member of our group 

already owned, but it was so large and had a limited number 

of GPIO pins it would have made for a much less optimized 

PCB design. 

B. Microcomputer – Raspberry Pi 3B+ 

The encoding of the camera feed to the phone needed 

something a lot more powerful than a microcontroller, 

leading to us using the Raspberry Pi. Again, our group had 

the most experience with the Raspberry Pi line of 

microcomputers as opposed to one of its competitors, the 

Banana Pi. The 3B+ model had a ribbon cable input, built 

in Wi-Fi, and exposed pins that would allow us to interact 

with the microcontroller, which is all that we needed. 

C. Camera – Omnivision 5647 

With safety being the backbone of our design, we 

required a wide viewing angle from the camera as well as 

ease of integration with the Raspberry Pi. There is an 

official camera for the Raspberry Pi, however it only had a 

standard lens with a viewing angle of 62 degrees. The 

Omnivision 5647 was just as compatible, having the correct 

firmware as well as a wide-angle lens attached to it with a 

field of view of 150 degrees, ideal for a backup camera. The 

camera is attached to the Raspberry Pi using a ribbon cable, 

which was ideal for the placement in our enclosure, 

allowing rigid flexibility for positioning it at the bottom of 

the enclosure. 

D. Ultrasonic Sensor – HC-SR05 

Most of the cheap ultrasonic sensors found online 

operated very similar to one another, with the only 

differences being the manufacturer or the color. A 4 pin and 

a 5-pin model were available, with the 5-pin model having 

an extra feature. Normally, there is a pin to activate the 

trigger, which sends out a pulse, and a pin to receive the 

echo that comes back, and the time between them is 

measured to calculate the distance to the object the pulse 

bounced off. This requires 2 GPIO pins. The 5-pin model 

has an extra pin, that when grounded, allows the echo pin 

to operate as both the trigger and the echo, allowing for the 

use of a single GPIO pin. We decided to go with this to 

simplify our PCB design as well as the layout of all of the 

hardware. 

However, when it came time to test these sensors, the 

datasheets that were found were sparse and limited in their 

information. While they boast this single pin trigger/echo 

feature, it cannot be implemented with the sensors we 

received. The 5-pin model can still operate with the 2-pin 

trigger/echo setup, but this did cause a modification to be 

made to our PCB design. 

E. Accelerometer – MMA8452Q 

For the use of motion sensing and direction, we wanted 

to go with an accelerometer. Their small size and generosity 

with data accuracy gave us a lot to work with. The protocol 

that the accelerometer uses for communication with the 

microcontroller is I2C, one line for the data and one line for 

the clock. We went with a 3-axis model, as we did not need 

a gyroscope or a compass along with the accelerometer. A 

lot of other models gave the same information, however 

they transmitted it over an analog signal. Considering our 

use of a digital framework, using an accelerometer that 

gave a digital signal would allow for better integration.  

F. Bluetooth Module – HC-06 

For the transmission of data between the microcontroller 

and the app, we needed to use Bluetooth. As it was already 

integrated with the Android phone we used, a module that 

could be soldered onto our PCB would allow us to send 

information over UART to the phone. Our original module 

was the HM-10, however its advertised range was nowhere 

near what we were getting during our testing. The HC-06 

was our second choice, which had a much-improved range 

for our purposes. 

The transmit and receive pins on the module are 

connected to the transmit and receive pins on the 

microcontroller for UART communication. Every time 

there is new data to be sent over, we break it up from 16-bit 

values into two 8-bit values and transmit them in an order 

that the app knows, so it can be properly reconstructed for 

the user. 

VI. HARDWARE DESIGN 

The hardware involved all of the components listed in the 

previous section, brought together on a single PCB. One of 

the biggest concerns with the hardware is the power 

efficiency. Using lithium ion rechargeable batteries means 

we have to be a lot more conscious of the power draw from 

the sensors, Raspberry Pi, and microcontroller. This section 



covers all of that, as well as electronic components that will 

be used to connect all the major components. 

 

A. Power Solutions 

Being mounted on the outside of a car, we had a few 

different options how powering our system. We first 

considered tapping into the brake lights, as these would be 

the closest source of electricity to the license plate. We 

opted against it in favor of something that wouldn’t force 

the user to run wires through their car. Rechargeable 

batteries were the best option for this. In terms of charging 

them, solar panels were considered. However, because of 

our enclosure design and the placement of the hardware, 

even if solar panels were to be affixed, they wouldn’t get 

the best sunlight exposure, and thus were deemed an 

unnecessary addition. 

For the rechargeable batteries, we chose lithium ion over 

Nickle metal hydride. Lithium ion batteries are typically 

used in cell phones and notebook computers due to being 

lightweight yet holding lots of energy within a compact 

package. Another advantage is their low self-discharge 

when the battery is not in use. Since lithium ion batteries 

commonly operate at 3.7 V, the voltage is easily and 

efficiently able to be stepped down without much power 

loss since the MCU can operate at a voltage of 3.6 V, only 

a 0.1 V difference. The biggest advantage of lithium ion 

batteries is their self-discharge rate, which can typically be 

from 0.5% - 3% of the batteries capacity per day [5]. 

B. Voltage Regulators 

In our design, all the components on the PCB are 

designed to have low input voltages - typically between 

1.8V - 3.6V. However, with the battery connected, we will 

have a 3.7V - 5V DC input, depending on the battery we 

choose. In order to operate our microcontroller and attached 

components, including the camera, we needed to convert 

the battery into the appropriate lower voltage. A voltage 

regulator would have been the cheapest option, required 

only a resistor. However, since the resistor value never 

changes it only supplies the voltage intended with a 

constant load impedance - which may not hold true in a 

real-world environment. While that is a negative aspect of 

the reliability - there is a positive aspect in that it is 

impossible for there to be a short circuit - which means the 

components are safe. This circuit will waste most of the 

power supplied into the resistor, which means very low 

efficiency, less than 50%. 

In terms of our design, we decided that higher frequency 

voltage converters would be more beneficial. This is mainly 

due to the ability to have a smaller inductor and capacitor 

in the circuit, as well as the fact that the power loss was 

minimal when currents are as small as they will be in our 

device. 

Based upon the different voltage regulators we 

researched, we decided to use the TPS63051 for our 3.3 V 

applications. The biggest factor in deciding was due to it 

having a significantly higher switching frequency than the 

TPS64200 family of devices. The difference between the 

other characteristics - such as efficiency and the voltage 

input range were negligible. The major advantage the 

TPS64200 family had was the maximum current being 3 

amperes, but for our design this much current would not be 

necessary, in fact we only estimated needing 9 mA. The 

maximum currents of 1 ampere in the TPS63051 will be 

more than enough to supply power to all of the components 

that require a 3.3-volt VCC. 

C. Logic Voltage Level Shifting 

Our system has components that operate at two different 

voltage levels - 3.3 volts and 5 volts. In order for any 

components that operate at different voltages to 

communicate with each other, the voltage level of each data 

pin must be shifted along the connection path in order to 

not cause damage to components or give unreliable results. 

In terms of our design, the specific components that operate 

at different voltage levels but were required to 

communicate to each other were the HC-SR05 ultrasonic 

sensors and the MSP430FR59561 microcontroller. 

We opted not to use voltage dividers on the PCB, as it 

would require multiple resistors, for the 3 ultrasonic sensors 

used, but instead use a logic voltage level translation. The 

TXB0104 model can handle 100 mA of output current, as 

opposed to the LFS0204 mode, which gives us a little more 

safety in terms of extra unanticipated current [6]. To 

safeguard our design, we decided to use the TXB0104 for 

our system 

D. Raspberry Pi Power 

The Raspberry Pi is the component that will draw the 

largest amount of power in our system. In order to power 

the Raspberry Pi, we needed a voltage source supplying 5V. 

Since our lithium ion battery will not supply this voltage, 

we will need a DC step up converter, also known as a boost 

converter. 

The trade-off when deciding between the TPS61253A 

and the TPS61232 boost converter components was the 

switching frequency and the maximum current output. 

Since this portion of the power supply would be used to 

power the Raspberry Pi module, which recommends for a 

2.5 ampere power supply, we decided to use the TPS61232. 

This component, despite having a lower switching 

frequency, still held efficiency above 90% at the low 

current ranges that our system would operate in low power 



mode. It also was a safer choice due to being able to handle 

more load current, in case of any unforeseen current drains 

in our implementation. 

 TPS61253A TPS61232 

Voltage input 
range  

2.3 V - 5.5 V  2.3 V - 5.5 V 

Voltage output 
range 

5 V  5V 

Maximum 
current output 

1.5A  2.1A 

Operating 
temperature  

-40°C - 85°C  -40°C - 85°C 

Switching 
Frequency 

3.5MHz 2MHz 

 
Fig. 4. Boost Converter Comparison 

 

E. Initial Design 

 
Fig. 5. Initial Design Flowchart 

This image serves as the basis of our hardware design. 

The items in purple represent the sensors and hardware that 

are supplement to the microcontroller and the 

microcomputer. The battery, as well as a USB charging port 

connected to the charge controller allow us to charge the 

batteries while in the device. The branches to the respective 

regulators then go off to the hardware that needs either 5v 

or 3.3v to be powered. 

F. Power Design 

The step-up converters were used for up stepping the 

power for the Raspberry Pi, we needed 2 different voltage 

regulators for the many parts of the system: a 3.3v regulator 

to power the microcontroller and accelerometer, and a 5v 

regulator for the ultrasonic sensors and Raspberry Pi. We 

used the TPS63051 buck converter and the TPS61232 step 

up converter for our 3.3v and 5v needs respectively. These 

modules were chosen based on the 3.3v regulators 

efficiency, while the 5v regulator was designed specifically 

for lithium ion batteries. 

G. Microcontroller Design 

 
Part Manufacturer Model QTY 

HM-10 Bluetooth 
Module  

DSD Tech  ML-HM-10  1  

MMA8452Q 
Accelerometer  

Xtrinsic  SEN-12756  1  

HC-SR05 
Ultrasonic 
Sensor  

Iduino  HCSR0501  3  

TXB0104 Level 
Shifter  

Texas 
Instruments  

TXB0104DR  1  

4.7 μF X5R 
Capacitors  

Taiyo Yuden  EMK212BBJ4
75MK-T  

1  

0.1 μF X5R 
Capacitors  

Taiyo Yuden  JMK042BJ104
MC-W  

8  

4.7k Resistor  ROHM 
Semiconductors  

ESR01MZPJ4
72  

3  

50k Resistor  Vishay  CRCW040250
K0FKED  

1  

 

Fig. 6. Bill of Materials for Microcontroller schematic 

The HC-06 Bluetooth module communicates with UART 

for receiving and transmitting data. Those pins on the 

module connect with the MSP430FR59691 on its 

respective UART pins 2.5 for receiving data and 2.6 for 

transmitting data. The other most notable pin on the HC-06 

is pin 12, which is where the 3.3-volt power source will be 

supplied. For implementation, we plan on soldering the 

Bluetooth module directly on to the PCB.  

The MMA8452Q accelerometer connects using both I2C 

and GPIO connection. The SCL and SDA pins each have a 

pull up resistor configuration in order to avoid floating 

values and are connected to the SCL and SDA pins on the 

MSP430FR59561. The interrupt pins are connected to 

generic GPIO pins on the microcontroller, and the inputs 

have decoupling capacitors in order reduce high frequency 

noise in the power supply - as recommended by the 

datasheet. These interrupt pins were included in case we 

decided we could use them, which ended up not being in 

our final design. 

As noted before, the three HC-SR06 ultrasonic sensors 

were originally designed to work on a 3-pin model, but this 

proved to be a challenge and we had to include 2 GPIO pins 

for each sensor. The trigger and echo pins on each sensor 

are connected to a logic level shifter before connecting to a 

GPIO pin on the microcontroller. 

 

 

 



VII. SOFTWARE DESIGN 

A. Android Application 

Java was the primary language used when developing the 

Android app. We utilized Android Studio development and 

debugging, due to its support from Google as well as the 

ease of creating new screens for the user to navigate 

through. The app works through a series of panes: The 

wake-up command screen, the video stream screen, 

settings, and the debug screen which we used during 

testing. A Bluetooth connection is made from the wake-up 

screen, and once the connection is successful, the video 

stream begins to initialize, and the user is brought to the 

streaming screen. Java handles raw byte data a bit 

differently than C does, so the data being sent from the 

microcontroller is put back together and converted back to 

the original integer and floating-point values. Once the 

microcontroller sends the signal that the car no longer needs 

to be sending the camera feed, the app with cease all 

transmissions and go back to the wake-up screen, awaiting 

the user to need it again. 

We went with a very simplified approach for the app, 

since it will be used while driving, we didn’t want the user 

to have to navigate through a lot of options and pages. 

There are multiple threads handling the Bluetooth and 

video streaming actions in the background, to ensure there 

is minimal lag during peak data transmission.  

B. Microcontroller Embedded Programming 

TI has very useful launch pads for a lot of their MSP430 

Microcontroller devices. Our model had one available, 

which gave us a lot of room to test and prototyping our code 

and hardware before soldering to our PCB. The launch pad 

also allows us to connect 2 wires to the microcontroller that 

is connected to our PCB to load our code using Spy-bi 

Wire. 

For writing the C code that would be used on the 

MSP430, we used both Code Composer Studio, otherwise 

known as CCS, as well as TI’s own IDE, Energia. Code 

Composer allowed us to modify actual registers and use 

interrupts and low power mode, giving us the most usage 

out of the device. Energia, while limited in its functionality, 

was great as a backup tool that we used when we needed to 

test thing such as pins going high without creating a whole 

new project in CCS. 

The software for our microcontroller had the 

responsibility of turning on and capturing data from the 

accelerometer and the ultrasonic sensors, and relaying that 

data over UART to the Bluetooth module, being taken in 

by the Android app. The code that is written to run the 

sensors and begin collecting data, waits for an interrupt that 

runs when the wake command is sent from the phone to the 

microcontroller. During the time that the camera is in use, 

the sensor data is constantly being sent. It isn’t until camera 

feed transmission ceases that the microcontroller will stop 

sending data and re-enter its low power state. It is this low 

power state that allows for better battery consumption. The 

Raspberry Pi is very power hungry, so maintaining a system 

that shuts down these large operations when the user is no 

longer backing up extends the life of the battery. 

C. User Stories 

Below are the user stories that we created when designing 

the software for our application and hardware. We wanted 

to look at the user experience from their point of view, and 

ensure it functioned as a consumer would expect. These 

stories were formatted into requirements and aided us in the 

design process. 

 
ID  As a...  I want to be 

able to...  
So that I can...  

1  User  See the camera 
feed from the rear 
facing camera  

see what is 
behind me as I 
backup  

2  User  Get visual cues 
when an 
obstruction is 
behind the car  

act accordingly 
so that a collision 
does not occur  

3  User  Get audio cues 
when an 
obstruction is 
behind the car  

act accordingly 
so that a collision 
does not occur  

4  User  Connect to the 
camera assembly 
via Bluetooth  

have it turn on 
before I get to the 
car  

5  User  Connect to the 
camera assembly 
via Wi-Fi  

get the various 
sensor information 
sent to my phone  

 
Fig. 7. User Stories 

 

All these user stories involved communication between 

the app and the hardware. The audio and visual queues start 

off with the sensor data being transmitted to the app, which 

begins with the Bluetooth connection being initiated. As a 

user, we included the stories about Bluetooth and Wi-Fi, 

since Bluetooth is a much simpler process for end users to 

configure. The app is designed to seamlessly make the 

connection, and even if the user had to find the device on 

their own, they would be able to. This was initially part of 

our design, having us consider if there was multiple Backup 

Buddies to connect to. 

VIII. SYSTEM TESTING 

Testing the android app and the embedded hardware was 

done as we integrated new features. Once these features 

were set in stone and everything was brought together, we 



created a series of physical and tests to put the device 

through, both in the lab and in a testing environment 

 

A. Ultrasonic Sensor Testing 

Due to the ultrasonic sensors not being the most accurate 

devices, we recorded the data we received from them to 

create thresholds and maximums to stop incorrect data from 

being sent to the user. We created a maximum distance to 

be considered at 130cm, as anything further than this would 

not be in immediate danger of a moving vehicle. This was 

tested by having the sensors placed facing outward on a 

table, and a large flat notebook as the test obstruction. Our 

testing showed us that anything further than 130cm 

wouldn’t be relayed back to the user. 

We also had to test for 0 data. This is what we called that 

data that resulted from a timeout of the sensors. Because 

they rely on a pulse to be caught, if that pulse bounced out 

of range then the data wouldn’t be useful. So, we had our 

system set to not use the data if it was zero, but maintain 

the value caught before that transmission. These tests 

proved successful, and we were able to have our sensors 

give us usable data, even if there were spikes or drops. 

B. Accelerometer Testing 

The 3-axis accelerometer we are using has a lot of 

different registers, but we were just interested in the x, y, 

and z Gs data. This was simple enough, as we just 

programmed the accelerometer to send this information 

over Bluetooth alongside the ultrasonic data. The 

debugging interface we created showed us that this data was 

coming in as expected and changed with regard to changed 

in motion of the accelerometer. 

C. Camera Testing with Sensor Data 

Transmission of the camera feed along side the data 

incoming from the Bluetooth is what the user will be seeing 

when they are inside the car. We setup an environment 

where the app would send a signal to initiate the 

transmission with both the microcontroller and the 

microcomputer. This initiated both a Bluetooth and Wi-Fi 

connection, starting the transmission of both the camera 

feed as well as the sensor information.  

Inside of the lab, we had the camera sitting in safe place, 

with the sensors on the PCB connected separately. While 

the transmission of the video feed was going, data was 

being sent to the phone. As expected, whenever we would 

place an object in front of the sensors, there was a visual 

change, depending on how far the object was. We were able 

to view the raw data on our computers, to verify that the 

data we were seeing gave the appropriate response on the 

phone. 
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